Analysis of the rocking response of rigid blocks standing free on a seismically isolated base
SUMMARY This paper examines the rocking response and stability of rigid blocks standing free on an isolated base supported: (a) on linear viscoelastic bearings, (b) on single concave and (c) on double concave spherical sliding bearings. The investigation concludes that seismic isolation is beneficia...
Gespeichert in:
Veröffentlicht in: | Earthquake engineering & structural dynamics 2012-02, Vol.41 (2), p.177-196 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | SUMMARY
This paper examines the rocking response and stability of rigid blocks standing free on an isolated base supported: (a) on linear viscoelastic bearings, (b) on single concave and (c) on double concave spherical sliding bearings. The investigation concludes that seismic isolation is beneficial to improve the stability only of small blocks. This happens because while seismic isolation increase the ‘static’ value of the minimum overturning acceleration, this value remains nearly constant as we move to larger blocks or higher frequency pulses; therefore, seismic isolation removes appreciably from the dynamics of rocking blocks the beneficial property of increasing stability as their size increases or as the excitation pulse period decreases. This remarkable result suggests that free‐ standing ancient classical columns exhibit superior stability as they are built (standing free on a rigid foundation) rather than if they were seismically isolated even with isolation system with long isolation periods. The study further confirms this finding by examining the seismic response of the columns from the peristyle of two ancient Greek temples when subjected to historic records. Copyright © 2011 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0098-8847 1096-9845 |
DOI: | 10.1002/eqe.1124 |