Achieving an excellent efficiency of 11.57% in a polymer solar cell submodule with a 55 cm 2 active area using 1D / 2A terpolymers and environmentally friendly nonhalogenated solvents
The transition of polymer solar cells (PSCs) from laboratory‐scale unit cells to industrial‐scale modules requires the development of new p‐type polymers for high‐performance large‐area PSC modules based on environmentally friendly processes. Herein, a series of 1D/2A terpolymers (PBTPttBD) composed...
Gespeichert in:
Veröffentlicht in: | EcoMat (Beijing, China) China), 2024-01, Vol.6 (1) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The transition of polymer solar cells (PSCs) from laboratory‐scale unit cells to industrial‐scale modules requires the development of new p‐type polymers for high‐performance large‐area PSC modules based on environmentally friendly processes. Herein, a series of 1D/2A terpolymers (PBTPttBD) composed of benzo[1,2‐
b
:4,5‐
b’
]dithiophene (BDT‐F), thieno[3,4‐
c
]pyrrole‐4,6(5
H
)‐dione (TPD‐TT), and benzo‐[1,2‐
c
:4,5‐
c’
]dithiophene‐4,8‐dione (BDD) is synthesized for nonhalogenated solvent processed PSC submodules. The optical, electrochemical, charge‐transport, and nano‐morphological properties of the PBTPttBD terpolymers are modulated by adjusting the molar ratio of the TPD‐TT and BDD components. PBTPttBD‐75:BTP‐eC11‐based PSC submodules, processed with
o
‐xylene, achieve a notable PCE of 11.57% over a 55 cm
2
active area. This PCE value is among the highest reported using a nonhalogenated solvent over a 55 cm
2
active area module. The optimized PSC submodule exhibits minimal cell‐to‐module loss, which can be attributed to the optimized crystallinity of the PBTPttBD‐75:BTP‐eC11 photoactive layer system and favorable film formation kinetics.
image |
---|---|
ISSN: | 2567-3173 2567-3173 |
DOI: | 10.1002/eom2.12421 |