A Novel Flexible Electrochemical Ascorbic Acid Sensor Constructed by Ferrocene Methanol doped Multi‐walled Carbon Nanotube Yarn

An ascorbic acid (AA) electrochemical sensor was fabricated by ferrocene methanol (Fc−OH) modified multi‐walled carbon nanotube yarn (CNTY). The prepared sensor (Fc−OH/CNTY) exhibited outstanding flexibility, highly stretchability, excellent bendability and obviously electrocatalytic activity for ox...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electroanalysis (New York, N.Y.) N.Y.), 2021-12, Vol.33 (12), p.2445-2451
Hauptverfasser: Wang, Yue, Wu, Jinping, Yang, Tian, Wang, Zhong, Hasebe, Yasushi, Lv, Tianhang, Zhang, Zhiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An ascorbic acid (AA) electrochemical sensor was fabricated by ferrocene methanol (Fc−OH) modified multi‐walled carbon nanotube yarn (CNTY). The prepared sensor (Fc−OH/CNTY) exhibited outstanding flexibility, highly stretchability, excellent bendability and obviously electrocatalytic activity for oxidation of ascorbic acid. The morphology of Fc−OH/CNTY was evaluated by scanning electron microscope. The electrochemical behaviour of Fc−OH/CNTY sensor was studied by cyclic voltammetry and amperometry measurements. Moreover, the influence of Fc−OH concentration, applied potential and electrolyte solution pH were also investigated to obtain the best sensor performance. The prepared sensor exhibited a wide linear range from 3 μM to 3.0 mM toward AA, and a detection limit of 1.32 μM (S/N=3). It also possessed a good lifetime and a fast response speed (2.83 s). In addition, the Fc−OH/CNTY sensor remained 90 % and 60 % of its initial activity after 100 and 500 times bending, respectively, which indicated a potential application on flexible, implantable and/or wearable electrochemical sensors.
ISSN:1040-0397
1521-4109
DOI:10.1002/elan.202100322