Voltammetric Detection of Catechol and Dopamine Based on a Supramolecular Composite Prepared from Multifarene[3,3] and Reduced Graphene Oxide

A selective and sensitive modified‐electrode for catechol and dopamine was presented with supramolecular recognition accomplished by making use of the macrocyclic host multifarene[3,3] that was used as a composite with reduced graphene oxide. The morphologies and electrochemical nature of the compos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electroanalysis (New York, N.Y.) N.Y.), 2020-07, Vol.32 (7), p.1449-1458
Hauptverfasser: Luo, Huan, Zhao, Yong‐Yi, Jin, Xian‐Yi, Yang, Jian‐Mei, Cong, Hang, Ge, Qing‐Mei, Sun, Lin, Liu, Mao, Tao, Zhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A selective and sensitive modified‐electrode for catechol and dopamine was presented with supramolecular recognition accomplished by making use of the macrocyclic host multifarene[3,3] that was used as a composite with reduced graphene oxide. The morphologies and electrochemical nature of the composite were characterized by atomic force microscopy, transmission electron microscopy, cyclic voltammetry and differential pulse anodic voltammetry. The modified electrode, best operated at a potential around 0.16 V vs. Ag/AgCl, displayed a differential pulse voltammetric response in the linear concentration range of 10–100 nM within a detection limit of 0.51 nM (at S/N=3). It was further applied to detect dopamine (at a working potential of 0.18 V vs. Ag/AgCl) in the linear concentration range of 10–100 nM with a detection limit of 0.62 nM. The modified electrode also exhibited satisfactory results to the determination of dopamine injections. The constructed modified electrode for dopamine detection was investigated in the presence of the interfering substances including glucose, urea and ascorbic acid, indicating a good selectivity.
ISSN:1040-0397
1521-4109
DOI:10.1002/elan.201900772