Quartz‐crystal Microbalance Measurements of CD19 Antibody Immobilization on Gold Surface and Capturing B Lymphoblast Cells: Effect of Surface Functionalization

We have investigated different surface functionalization methods to immobilize CD19 antibody on gold surface to capture B lymphoblast cells associated with the acute lymphoblastic leukemia disease. Quartz Crystal Microbalance measurements were performed to analyze the binding kinetics of each layer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electroanalysis (New York, N.Y.) N.Y.), 2018-05, Vol.30 (5), p.834-841
Hauptverfasser: Icoz, Kutay, Soylu, Mehmet Cagri, Canikara, Zeynep, Unal, Ekrem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have investigated different surface functionalization methods to immobilize CD19 antibody on gold surface to capture B lymphoblast cells associated with the acute lymphoblastic leukemia disease. Quartz Crystal Microbalance measurements were performed to analyze the binding kinetics of each layer and determine the optimum method, which results in higher cell capture rates. The random orientation of antibody and oriented antibody through protein G was investigated and protein G presence resulted in 15,2 Hz frequency shift for 104 cells/mL. The 3‐mercaptopropyltrimethoxysilane (MPS) and 11‐Mercaptoundecanoic acid (MUA) coatings of gold surface together with 4‐(N‐Maleimidomethyl)cyclohexane‐1‐carboxylic acid 3‐sulfo‐N‐hydroxysuccinimide ester sodium salt (Sulfo‐SMCC) and N‐Ethyl‐N’‐(3‐dimethylaminopropyl) carbodiimide hydrochloride (EDC)/N‐hydroxysulfosuccinimide (NHS) linker layers were tested on QCM for protein G and antibody binding. The results indicate that MUA, EDC/NHS, protein G, antibody CD19 is the optimum surface modification among the tested combinations. By using the optimum surface functionalization method, minimum 103 cell per mL was measured as 1.9 Hz frequency shift.
ISSN:1040-0397
1521-4109
DOI:10.1002/elan.201700789