A Sensitive Electrochemical Sensor for Voltammetric Determination of Ganciclovir Based on Au‐ZnS Nanocomposite
An electrode modified with ZnS and gold nanoparticles (Au‐ZnS NPs) is introduced for highly sensitive voltammetric determination of ganciclovir (GCV). Surface structure and topography of the modified electrode was studied by SEM, EDX and XRD techniques. Electrochemical oxidation of GCV was investiga...
Gespeichert in:
Veröffentlicht in: | Electroanalysis (New York, N.Y.) N.Y.), 2018-05, Vol.30 (5), p.803-809 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An electrode modified with ZnS and gold nanoparticles (Au‐ZnS NPs) is introduced for highly sensitive voltammetric determination of ganciclovir (GCV). Surface structure and topography of the modified electrode was studied by SEM, EDX and XRD techniques. Electrochemical oxidation of GCV was investigated by cyclic (CV) and square wave voltammetry (SWV) in Briton‐Robinson buffer solution (pH 1.5). The results showed that electrochemical oxidation of GCV at the Au‐ZnS modified glassy carbon electrode (GCE) is irreversible and exhibited diffusion controlled electrode process over the pH range from 1.0 to 6.0. The oxidation potential peak and pH relationship showed that electrons and protons were transferred simultaneously over the electrochemical oxidation process. Using the proposed sensor, the linear calibration curves were obtained in the ranges of 0.04–1.50 μM and 1.5–70.0 μM with detection limit of 0.01 μM GCV by SWV technique. The modified electrode was successfully applied as a sensitive, reproducible and repeatable sensor for determination of the trace amount of GCV in human serum, urine and cymevene vials. Reasonable results were obtained from comparing the measurements of the real samples by the new sensor to high performance liquid chromatography (HPLC) as a standard method. |
---|---|
ISSN: | 1040-0397 1521-4109 |
DOI: | 10.1002/elan.201700757 |