Carbon dioxide blanketing impedes the formation of 4-hydroxynonenal and acrylamide during frying. A novel procedure for HNE quantification

Acrylamide and 4‐hydroxynonenal (HNE) are among the most detrimental compounds formed during high temperature processing of food. The effect of carbon dioxide blanketing (CDB) on the formation and accumulation in food of these compounds during deep‐fat frying was investigated. French fries were frie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of lipid science and technology 2011-07, Vol.113 (7), p.916-923
Hauptverfasser: Aladedunye, Felix A., Matthäus, Bertrand, Przybylski, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acrylamide and 4‐hydroxynonenal (HNE) are among the most detrimental compounds formed during high temperature processing of food. The effect of carbon dioxide blanketing (CDB) on the formation and accumulation in food of these compounds during deep‐fat frying was investigated. French fries were fried for 7 h daily and for 7 days in canola oil at 185 ± 5°C without and with CO2 protection. The amount of acrylamide and HNE accumulated in the French fries were analyzed. Compared to standard frying conditions (SFC), frying under CDB reduced the amount of HNE by 62%. On the 3rd day of frying, the amount of acrylamide in fries fried under SFC was 3.3 times higher compared to frying with CO2 protection. Frying with carbon dioxide protection is an effective and practical way to impede formation of toxic components during deep‐fat frying. To assess formation of HNE a simple, sensitive and reliable procedure for HNE analysis in frying oils and fried products was developed and evaluated. Practical applications: The toxicity of HNE and acrylamide, coupled with the increasing consumption of fried foods necessitates that measures be taken to reduce their formation and subsequent accumulation in fried foods. The frying method proposed in this study is very effective and requires only a simple modification to the fryer. Developed rapid and simple procedure for HNE analysis allows more accurate quantification.
ISSN:1438-7697
1438-9312
DOI:10.1002/ejlt.201100021