Bimetallic In 2 O 3 / Bi 2 O 3 Catalysts Enable Highly Selective CO 2 Electroreduction to Formate within Ultra‐Broad Potential Windows

CO 2 electrochemical reduction reaction (CO 2 RR) to formate is a hopeful pathway for reducing CO 2 and producing high‐value chemicals, which needs highly selective catalysts with ultra‐broad potential windows to meet the industrial demands. Herein, the nanorod‐like bimetallic In 2 O 3 /Bi 2 O 3 cat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental materials (Hoboken, N.J.) N.J.), 2024-01, Vol.7 (1)
Hauptverfasser: Yang, Zhongxue, Wang, Hongzhi, Bi, Xinze, Tan, Xiaojie, Zhao, Yuezhu, Wang, Wenhang, Zou, Yecheng, Wang, Huaiping, Ning, Hui, Wu, Mingbo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CO 2 electrochemical reduction reaction (CO 2 RR) to formate is a hopeful pathway for reducing CO 2 and producing high‐value chemicals, which needs highly selective catalysts with ultra‐broad potential windows to meet the industrial demands. Herein, the nanorod‐like bimetallic In 2 O 3 /Bi 2 O 3 catalysts were successfully synthesized by pyrolysis of bimetallic InBi‐MOF precursors. The abundant oxygen vacancies generated from the lattice mismatch of Bi 2 O 3 and In 2 O 3 reduced the activation energy of CO 2 to and improved the selectivity of to formate simultaneously. Meanwhile, the carbon skeleton derived from the pyrolysis of organic framework of InBi‐MOF provided a conductive network to accelerate the electrons transmission. The catalyst exhibited an ultra‐broad applied potential window of 1200 mV (from −0.4 to −1.6 V vs RHE), relativistic high Faradaic efficiency of formate (99.92%) and satisfactory stability after 30 h. The in situ FT‐IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO 2 molecules, and oxygen vacancy path is dominant pathway. This work provides a convenient method to construct high‐performance bimetallic catalysts for the industrial application of CO 2 RR.
ISSN:2575-0356
2575-0356
DOI:10.1002/eem2.12508