Poly(Ionic Liquid) as an Anion Exchange Membrane for a 3.3 V Copper–Lithium Battery

Metal–metal battery bears great potential for next‐generation large‐scale energy storage system because of its simple manufacture process and low production cost. However, the cross‐over of metal cations from the cathode to the anode causes a loss in capacity and influences battery stability. Herein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental materials (Hoboken, N.J.) N.J.), 2023-07, Vol.6 (4), p.n/a
Hauptverfasser: Xue, Kaiming, Zhao, Yu, Lee, Pui‐Kit, Yu, Denis Y. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal–metal battery bears great potential for next‐generation large‐scale energy storage system because of its simple manufacture process and low production cost. However, the cross‐over of metal cations from the cathode to the anode causes a loss in capacity and influences battery stability. Herein, a coating of poly (ionic liquid) (PIL) with poly(diallyldimethylammonium bis(trifluoromethanesulfonyl)imide) (PDADMA+TFSI−) on a commercial polypropylene (PP) separator serves as an anion exchange membrane for a 3.3 V copper–lithium battery. The PIL has a positively charged polymer backbone that can block the migration of copper ions, thus improving Coulombic efficiency, long‐term cycling stability and inhibiting self‐discharge of the battery. It can also facilitate the conduction of anions through the membrane and reduce polarization, especially for fast charging/discharging. Bruce‐Vincent method gives the transport number in the electrolyte to be 0.25 and 0.04 for PP separator without and with PIL coating, respectively. This suggests that the PIL layer reduces the contribution of the internal current due to cation transport. The use of PIL as a coating layer for commercial PP separator is a cost‐effective way to improve overall electrochemical performance of copper–lithium batteries. Compared to PP and polyacrylic acid(PAA)/PP separators, the PIL/PP membrane raises the Coulombic efficiency to 99% and decreases the average discharge voltage drop to about 0.09 V when the current density is increased from 0.1 to 1 mA cm−2. The poly(ionic liquid) polymer (PIL) on PP separator effectively suppresses the cross‐over of copper ions from the cathode compartment to the anode compartment in the Cu‐Li battery, reducing self‐discharge and improving the Coulombic efficiency and cycle performance of the metal‐metal battery.
ISSN:2575-0356
2575-0356
DOI:10.1002/eem2.12395