Riparian forest productivity decline initiated by streamflow diversion then amplified by atmospheric drought 40 years later

Riparian trees and their annual growth rings can be used to reconstruct drought histories related to streamflow. Because the death of individual trees reduces competition for survivors, however, tree‐ring chronologies based only on surviving trees may underestimate drought impacts. This problem can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecohydrology 2022-04, Vol.15 (3), p.n/a
Hauptverfasser: Schook, Derek M., Friedman, Jonathan M., Hoover, Jamie D., Rice, Steven E., Thaxton, Richard D., Cooper, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Riparian trees and their annual growth rings can be used to reconstruct drought histories related to streamflow. Because the death of individual trees reduces competition for survivors, however, tree‐ring chronologies based only on surviving trees may underestimate drought impacts. This problem can be addressed by calculating productivity at the stand scale to account for tree mortality and establishment. In the semi‐arid Great Basin in the western United States, we calculated riparian wood production from 1946 to 2016 along a stream where most flow has been removed by a diversion pipeline since 1961. The water table was found to be generally below the root zone of cottonwoods (Populus angustifolia and P. angustifolia × trichocarpa) in the pipeline‐dewatered reach but within it in reference reaches. To reconstruct forest productivity through time, we separately combined measurements of tree‐ring basal area increment with either changing forest area from aerial photos or a census of cross‐dated living and dead cottonwoods. Both approaches revealed productivity declines in the dewatered reach relative to adjacent reference reaches, and the decline accelerated in the 2000s. Tree‐ring narrowing resulted in divergence between the dewatered reach and one reference reach within 5 years after diversion. However, the dewatered reach did not diverge from the other reference reach until 40 years later, when an unprecedented early 2000s atmospheric drought coupled with diversion to cause extensive cottonwood mortality. We conclude that dendrochronological investigations of forest response to environmental stress should incorporate stand dynamics and that the full impacts of flow diversion can be delayed for decades.
ISSN:1936-0584
1936-0592
DOI:10.1002/eco.2408