Impact of Oreochromis niloticus (Linnaeus, 1758) (Pisces: Cichlidae) invasion on taxonomic and functional diversity of native fish species in the upper Kabompo River, northwest of Zambia
Invasive alien species have been revealed to drastically alter the structure of native communities; however, there is scarce information on whether taxonomic and functional spaces occupied by native species are equally filled by exotic species. We investigated the diversity of native species to unde...
Gespeichert in:
Veröffentlicht in: | Ecology and Evolution 2021-09, Vol.11 (18), p.12845-12857 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Invasive alien species have been revealed to drastically alter the structure of native communities; however, there is scarce information on whether taxonomic and functional spaces occupied by native species are equally filled by exotic species. We investigated the diversity of native species to understand the impact of exotic Oreochromis niloticus in the upper Kabompo River, northwest of Zambia using taxonomic and functional diversity indices. To achieve this, two tests were performed (Test 1, compared natives in invaded and uninvaded sections; Test 2, compared natives in invaded section). A total of 17 species were collected for functional diversity computation, out of which fourteen (14) functional trait measurements linked to feeding, locomotion, and life history strategy were taken. Findings revealed that taxonomic and functional diversity values changed with invasion in both tests. Taxonomic diversity was 15% more in invaded than uninvaded sections in Test 1 and was not consistent across sampling points of invaded section in Test 2. Invaded areas were taxonomically less diverse, but functionally diverse in both tests. The analysis of similarity and nonmetric multidimensional scaling revealed no difference in Bray–Curtis similarity assemblages in both tests. Our findings revealed that exotic species more often occupy unfilled gaps in the communities often occupied by the native species; this is achieved by occupying functional spaces. Overall, changes in taxonomic and functional diversity of native species documented here partially confirmed impacts of O. niloticus invasion. Therefore, we recommend a multifaceted approach to assess cumulative impacts of invasion on native species.
Nile tilapia invasion. |
---|---|
ISSN: | 2045-7758 2045-7758 |
DOI: | 10.1002/ece3.8031 |