Nurr1 blocks the mitogenic effect of FGF ‐2 and EGF , inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergic‐ GABA ergic neuronal phenotypes
The transcription factor Nurr1 is expressed in the mouse olfactory bulb (OB), although it remains unknown whether it influences the generation of dopaminergic neurons (DA) (DA neurons) in cells isolated from this brain region. We found that expressing Nurr1 in proliferating olfactory bulb stem cells...
Gespeichert in:
Veröffentlicht in: | Developmental neurobiology (Hoboken, N.J.) N.J.), 2015-08, Vol.75 (8), p.823-841 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The transcription factor Nurr1 is expressed in the mouse olfactory bulb (OB), although it remains unknown whether it influences the generation of dopaminergic neurons (DA) (DA neurons) in cells isolated from this brain region. We found that expressing Nurr1 in proliferating olfactory bulb stem cells (OBSCs) produces a marked inhibition of cell proliferation and the generation of immature neurons immunoreactive for tyrosine hydroxylase (TH) concomitant with marked upregulations of
Th
,
Dat
,
Gad
, and
Fgfr2
transcripts. In long‐term cultures, these cells develop neurochemical and synaptic markers of mature‐like mesencephalic DA neurons, expressing GIRK2, VMAT2, DAT, calretinin, calbindin, synapsin‐I, and SV2. Concurring with the increase in both
Th
and
Gad
expression, a subpopulation of induced cells was both TH‐ and GAD‐immunoreactive indicating that they are dopaminergic‐GABAergic neurons. Indeed, these cells could mature to express VGAT, suggesting they can uptake and store GABA in vesicles. Remarkably, the dopamine D1 receptor agonist SKF‐38393 induced c‐Fos in TH
+
cells and dopamine release was detected in these cultures under basal and KCl‐evoked conditions. By contrast, cotransducing the Neurogenin2 and Nurr1 transcription factors produced a significant decrease in the number of TH‐positive neurons. Our results indicate that Nurr1 overexpression in OBSCs induces the formation of two populations of mature dopaminergic neurons with features of the ventral mesencephalon or of the OB, capable of responding to functional dopaminergic stimuli and of releasing dopamine. They also suggest that the accumulation of
Fgfr2
by Nurr1 in OBSCs may be involved in the generation of DA neurons. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 823–841, 2015 |
---|---|
ISSN: | 1932-8451 1932-846X |
DOI: | 10.1002/dneu.22251 |