Collisional Ionization of Excited State Neon in a Gas Discharge Plasma

We report the first case where it is possible to clearly identify and quantitatively characterize the dominant physical processes contributing to production of the optogalvanic effect (OGE) signal in a discharge plasma. This work concentrates on the simplest case where only two states are involved i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to plasma physics (1988) 1995, Vol.35 (4-5), p.439-452
Hauptverfasser: Han, X. L., Wisehart, V., Conner, S. E., Su, M.-C., Monts, D. L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the first case where it is possible to clearly identify and quantitatively characterize the dominant physical processes contributing to production of the optogalvanic effect (OGE) signal in a discharge plasma. This work concentrates on the simplest case where only two states are involved in the optical transition. The theoretical model with only four parameters is in excellent agreement with the experimentally obtained time‐resolved OGE waveforms. The collisional ionization rate in the upper state is twice as fast as that in the lower state although the two states are only separated by 1.94 eV. We conclude that the optogalvanic effect of the neon 640.22 nm transition is due primarily to the electron collisional ionization of the neon atoms. An alternative interpretation for the lengthening of the final state lifetime is also included (see Appendix).
ISSN:0863-1042
1521-3986
DOI:10.1002/ctpp.2150350412