Cellular neural network with trapezoidal activation function
This paper presents a cellular neural network (CNN) scheme employing a new non‐linear activation function, called trapezoidal activation function (TAF). The new CNN structure can classify linearly non‐separable data points and realize Boolean operations (including eXclusive OR) by using only a singl...
Gespeichert in:
Veröffentlicht in: | International journal of circuit theory and applications 2005-09, Vol.33 (5), p.393-417 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a cellular neural network (CNN) scheme employing a new non‐linear activation function, called trapezoidal activation function (TAF). The new CNN structure can classify linearly non‐separable data points and realize Boolean operations (including eXclusive OR) by using only a single‐layer CNN. In order to simplify the stability analysis, a feedback matrix W is defined as a function of the feedback template A and 2D equations are converted to 1D equations. The stability conditions of CNN with TAF are investigated and a sufficient condition for the existence of a unique equilibrium and global asymptotic stability is derived. By processing several examples of synthetic images, the analytically derived stability condition is also confirmed. Copyright © 2005 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0098-9886 1097-007X |
DOI: | 10.1002/cta.328 |