Cellular neural network with trapezoidal activation function

This paper presents a cellular neural network (CNN) scheme employing a new non‐linear activation function, called trapezoidal activation function (TAF). The new CNN structure can classify linearly non‐separable data points and realize Boolean operations (including eXclusive OR) by using only a singl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of circuit theory and applications 2005-09, Vol.33 (5), p.393-417
Hauptverfasser: Bilgili, Erdem, Göknar, İzzet Cem, Ucan, Osman Nuri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a cellular neural network (CNN) scheme employing a new non‐linear activation function, called trapezoidal activation function (TAF). The new CNN structure can classify linearly non‐separable data points and realize Boolean operations (including eXclusive OR) by using only a single‐layer CNN. In order to simplify the stability analysis, a feedback matrix W is defined as a function of the feedback template A and 2D equations are converted to 1D equations. The stability conditions of CNN with TAF are investigated and a sufficient condition for the existence of a unique equilibrium and global asymptotic stability is derived. By processing several examples of synthetic images, the analytically derived stability condition is also confirmed. Copyright © 2005 John Wiley & Sons, Ltd.
ISSN:0098-9886
1097-007X
DOI:10.1002/cta.328