Scaling up BiVO 4 Photoanodes on Porous Ti Transport Layers for Solar Hydrogen Production

Commercialization of photoelectrochemical (PEC) water-splitting devices requires the development of large-area, low-cost photoanodes with high efficiency and photostability. Herein, we address these challenges by using scalable fabrication techniques and porous transport layer (PTLs) electrode suppo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2024-01, Vol.17 (2), p.e202300969
Hauptverfasser: Patil Kunturu, Pramod, Lavorenti, Marek, Bera, Susanta, Johnson, Hannah, Kinge, Sachin, van de Sanden, Mauritius C M, Tsampas, Mihalis N
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Commercialization of photoelectrochemical (PEC) water-splitting devices requires the development of large-area, low-cost photoanodes with high efficiency and photostability. Herein, we address these challenges by using scalable fabrication techniques and porous transport layer (PTLs) electrode supports. We demonstrate the deposition of W-doped BiVO on Ti PTLs using successive-ionic-layer-adsorption-and-reaction methods followed by boron treatment and chemical bath deposition of NiFeOOH co-catalyst. The use of PTLs that facilitate efficient mass and charge transfer allowed the scaling of the photoanodes (100 cm ) while maintaining ~90 % of the performance obtained with 1 cm photoanodes for oxygen evolution reaction, that is, 2.10 mA cm at 1.23 V vs. RHE. This is the highest reported performance to date. Integration with a polycrystalline Si PV cell leads to bias-free water splitting with a stable photocurrent of 208 mA for 6 h and 2.2 % solar-to-hydrogen efficiency. Our findings highlight the importance of photoelectrode design towards scalable PEC device development.
ISSN:1864-5631
1864-564X
DOI:10.1002/cssc.202300969