Phase transitions and generalized motion by mean curvature

We study the limiting behavior of solutions to appropriately rescaled versions of the Allen‐Cahn equation, a simplified model for dynamic phase transitions. We rigorously establish the existence in the limit of a phase‐antiphase interface evolving according to mean curvature motion. This assertion i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 1992-10, Vol.45 (9), p.1097-1123
Hauptverfasser: Evans, L. C., Soner, H. M., Souganidis, P. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the limiting behavior of solutions to appropriately rescaled versions of the Allen‐Cahn equation, a simplified model for dynamic phase transitions. We rigorously establish the existence in the limit of a phase‐antiphase interface evolving according to mean curvature motion. This assertion is valid for all positive time, the motion interpreted in the generalized sense of Evans‐Spruck and Chen‐Giga‐Goto after the onset of geometric singularities.
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.3160450903