Maximal displacement of branching brownian motion

It is shown that the position of any fixed percentile of the maximal displacement of standard branching Brownian motion in one dimension is 21/2t–3 · 2−3/2 log t + O(1) at time t, the second‐order term having been previously unknown. This determines (to within O(1)) the position of the travelling wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 1978-09, Vol.31 (5), p.531-581
1. Verfasser: Bramson, Maury D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that the position of any fixed percentile of the maximal displacement of standard branching Brownian motion in one dimension is 21/2t–3 · 2−3/2 log t + O(1) at time t, the second‐order term having been previously unknown. This determines (to within O(1)) the position of the travelling wave of the semilinear heat equation, ut =1/2uxx +f(u), in the classic paper by Kolmogorov‐Petrovsky‐Piscounov, “Étude de l'équations de la diffusion avec croissance de la quantité de la matière et son application à un problème biologique”, 1937.
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.3160310502