Maximal displacement of branching brownian motion
It is shown that the position of any fixed percentile of the maximal displacement of standard branching Brownian motion in one dimension is 21/2t–3 · 2−3/2 log t + O(1) at time t, the second‐order term having been previously unknown. This determines (to within O(1)) the position of the travelling wa...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 1978-09, Vol.31 (5), p.531-581 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that the position of any fixed percentile of the maximal displacement of standard branching Brownian motion in one dimension is 21/2t–3 · 2−3/2 log t + O(1) at time t, the second‐order term having been previously unknown. This determines (to within O(1)) the position of the travelling wave of the semilinear heat equation, ut =1/2uxx +f(u), in the classic paper by Kolmogorov‐Petrovsky‐Piscounov, “Étude de l'équations de la diffusion avec croissance de la quantité de la matière et son application à un problème biologique”, 1937. |
---|---|
ISSN: | 0010-3640 1097-0312 |
DOI: | 10.1002/cpa.3160310502 |