Volume and time doubling of graphs and random walks: The strongly recurrent case

This paper proves upper and lower off‐diagonal, sub‐Gaussian transition probability estimates for strongly recurrent random walks under sufficient and necessary conditions. Besides the known conditions, volume doubling and the elliptic Harnack inequality, a new property is introduced: time doubling....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2001-08, Vol.54 (8), p.975-1018
1. Verfasser: Telcs, András
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1018
container_issue 8
container_start_page 975
container_title Communications on pure and applied mathematics
container_volume 54
creator Telcs, András
description This paper proves upper and lower off‐diagonal, sub‐Gaussian transition probability estimates for strongly recurrent random walks under sufficient and necessary conditions. Besides the known conditions, volume doubling and the elliptic Harnack inequality, a new property is introduced: time doubling. © 2001 John Wiley & Sons, Inc.
doi_str_mv 10.1002/cpa.1015
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cpa_1015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CPA1015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3675-4c426fe904ca928ea693ac8ec06e0f4686b17d9d01e8753e67369b396bb949913</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MoOKfgR8ijL9VLk6aNb2PqFIaOMedjSNPrVte1I-mY-_ZmKoIPvtz9j_txHD9CLhlcM4D4xm5MCCw5Ij0GKo2As_iY9AAYRFwKOCVn3r-HkYmM98hk3tbbNVLTFLSrQijabV5XzYK2JV04s1n6r50LpV3TnalX_pbOlkh959pmUe-pQ7t1DpuOWuPxnJyUpvZ48dP75PXhfjZ8jMYvo6fhYBxZLtMkElbEskQFwhoVZ2ik4sZmaEEilEJmMmdpoQpgmKUJR5lyqXKuZJ4roRTjfXL1fde61nuHpd64am3cXjPQBxM6mNAHEwGNvtFdVeP-X04PJ4O_fOU7_PjljVvp8Eaa6LfnkZ7OszFwNdV3_BMPjm2x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Volume and time doubling of graphs and random walks: The strongly recurrent case</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Telcs, András</creator><creatorcontrib>Telcs, András</creatorcontrib><description>This paper proves upper and lower off‐diagonal, sub‐Gaussian transition probability estimates for strongly recurrent random walks under sufficient and necessary conditions. Besides the known conditions, volume doubling and the elliptic Harnack inequality, a new property is introduced: time doubling. © 2001 John Wiley &amp; Sons, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.1015</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><ispartof>Communications on pure and applied mathematics, 2001-08, Vol.54 (8), p.975-1018</ispartof><rights>Copyright © 2001 John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3675-4c426fe904ca928ea693ac8ec06e0f4686b17d9d01e8753e67369b396bb949913</citedby><cites>FETCH-LOGICAL-c3675-4c426fe904ca928ea693ac8ec06e0f4686b17d9d01e8753e67369b396bb949913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.1015$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.1015$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Telcs, András</creatorcontrib><title>Volume and time doubling of graphs and random walks: The strongly recurrent case</title><title>Communications on pure and applied mathematics</title><addtitle>Comm. Pure Appl. Math</addtitle><description>This paper proves upper and lower off‐diagonal, sub‐Gaussian transition probability estimates for strongly recurrent random walks under sufficient and necessary conditions. Besides the known conditions, volume doubling and the elliptic Harnack inequality, a new property is introduced: time doubling. © 2001 John Wiley &amp; Sons, Inc.</description><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAQx4MoOKfgR8ijL9VLk6aNb2PqFIaOMedjSNPrVte1I-mY-_ZmKoIPvtz9j_txHD9CLhlcM4D4xm5MCCw5Ij0GKo2As_iY9AAYRFwKOCVn3r-HkYmM98hk3tbbNVLTFLSrQijabV5XzYK2JV04s1n6r50LpV3TnalX_pbOlkh959pmUe-pQ7t1DpuOWuPxnJyUpvZ48dP75PXhfjZ8jMYvo6fhYBxZLtMkElbEskQFwhoVZ2ik4sZmaEEilEJmMmdpoQpgmKUJR5lyqXKuZJ4roRTjfXL1fde61nuHpd64am3cXjPQBxM6mNAHEwGNvtFdVeP-X04PJ4O_fOU7_PjljVvp8Eaa6LfnkZ7OszFwNdV3_BMPjm2x</recordid><startdate>200108</startdate><enddate>200108</enddate><creator>Telcs, András</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200108</creationdate><title>Volume and time doubling of graphs and random walks: The strongly recurrent case</title><author>Telcs, András</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3675-4c426fe904ca928ea693ac8ec06e0f4686b17d9d01e8753e67369b396bb949913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Telcs, András</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Telcs, András</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volume and time doubling of graphs and random walks: The strongly recurrent case</atitle><jtitle>Communications on pure and applied mathematics</jtitle><addtitle>Comm. Pure Appl. Math</addtitle><date>2001-08</date><risdate>2001</risdate><volume>54</volume><issue>8</issue><spage>975</spage><epage>1018</epage><pages>975-1018</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><abstract>This paper proves upper and lower off‐diagonal, sub‐Gaussian transition probability estimates for strongly recurrent random walks under sufficient and necessary conditions. Besides the known conditions, volume doubling and the elliptic Harnack inequality, a new property is introduced: time doubling. © 2001 John Wiley &amp; Sons, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/cpa.1015</doi><tpages>44</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3640
ispartof Communications on pure and applied mathematics, 2001-08, Vol.54 (8), p.975-1018
issn 0010-3640
1097-0312
language eng
recordid cdi_crossref_primary_10_1002_cpa_1015
source Wiley Online Library Journals Frontfile Complete
title Volume and time doubling of graphs and random walks: The strongly recurrent case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volume%20and%20time%20doubling%20of%20graphs%20and%20random%20walks:%20The%20strongly%20recurrent%20case&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Telcs,%20Andr%C3%A1s&rft.date=2001-08&rft.volume=54&rft.issue=8&rft.spage=975&rft.epage=1018&rft.pages=975-1018&rft.issn=0010-3640&rft.eissn=1097-0312&rft_id=info:doi/10.1002/cpa.1015&rft_dat=%3Cwiley_cross%3ECPA1015%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true