Volume and time doubling of graphs and random walks: The strongly recurrent case

This paper proves upper and lower off‐diagonal, sub‐Gaussian transition probability estimates for strongly recurrent random walks under sufficient and necessary conditions. Besides the known conditions, volume doubling and the elliptic Harnack inequality, a new property is introduced: time doubling....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2001-08, Vol.54 (8), p.975-1018
1. Verfasser: Telcs, András
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proves upper and lower off‐diagonal, sub‐Gaussian transition probability estimates for strongly recurrent random walks under sufficient and necessary conditions. Besides the known conditions, volume doubling and the elliptic Harnack inequality, a new property is introduced: time doubling. © 2001 John Wiley & Sons, Inc.
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.1015