Volume and time doubling of graphs and random walks: The strongly recurrent case
This paper proves upper and lower off‐diagonal, sub‐Gaussian transition probability estimates for strongly recurrent random walks under sufficient and necessary conditions. Besides the known conditions, volume doubling and the elliptic Harnack inequality, a new property is introduced: time doubling....
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2001-08, Vol.54 (8), p.975-1018 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proves upper and lower off‐diagonal, sub‐Gaussian transition probability estimates for strongly recurrent random walks under sufficient and necessary conditions. Besides the known conditions, volume doubling and the elliptic Harnack inequality, a new property is introduced: time doubling. © 2001 John Wiley & Sons, Inc. |
---|---|
ISSN: | 0010-3640 1097-0312 |
DOI: | 10.1002/cpa.1015 |