Multidimensional viscous shocks II: The small viscosity limit

In this paper we prove the existence of curved, multidimensional viscous shocks and also justify the small‐viscosity limit. Starting with a curved, multidimensional (inviscid) shock solution to a system of hyperbolic conservation laws, we show that the shock can be obtained as a small‐viscosity limi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2004-02, Vol.57 (2), p.141-218
Hauptverfasser: Guès, Olivier, Métivier, Guy, Williams, Mark, Zumbrun, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we prove the existence of curved, multidimensional viscous shocks and also justify the small‐viscosity limit. Starting with a curved, multidimensional (inviscid) shock solution to a system of hyperbolic conservation laws, we show that the shock can be obtained as a small‐viscosity limit of solutions to an associated parabolic problem (viscous shocks). The two main hypotheses are a natural Evans function assumption on the viscous profile, together with a restriction on how much the shock can deviate from flatness. The main tools are a conjugation lemma that removes xN/ϵ dependence from the linearization of the parabolic problem about the viscous profile, new degenerate Kreiss‐type symmetrizers used to prove an L2 estimate for the linearized problem, and a finite‐regularity calculus of semiclassical and mixed type (classical‐semiclassical) pseudodifferential operators. © 2003 Wiley Periodicals, Inc.
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.10115