Multidimensional viscous shocks II: The small viscosity limit
In this paper we prove the existence of curved, multidimensional viscous shocks and also justify the small‐viscosity limit. Starting with a curved, multidimensional (inviscid) shock solution to a system of hyperbolic conservation laws, we show that the shock can be obtained as a small‐viscosity limi...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2004-02, Vol.57 (2), p.141-218 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove the existence of curved, multidimensional viscous shocks and also justify the small‐viscosity limit.
Starting with a curved, multidimensional (inviscid) shock solution to a system of hyperbolic conservation laws, we show that the shock can be obtained as a small‐viscosity limit of solutions to an associated parabolic problem (viscous shocks). The two main hypotheses are a natural Evans function assumption on the viscous profile, together with a restriction on how much the shock can deviate from flatness. The main tools are a conjugation lemma that removes xN/ϵ dependence from the linearization of the parabolic problem about the viscous profile, new degenerate Kreiss‐type symmetrizers used to prove an L2 estimate for the linearized problem, and a finite‐regularity calculus of semiclassical and mixed type (classical‐semiclassical) pseudodifferential operators. © 2003 Wiley Periodicals, Inc. |
---|---|
ISSN: | 0010-3640 1097-0312 |
DOI: | 10.1002/cpa.10115 |