Computational Studies Identifying Entry Inhibitor Scaffolds Targeting the Phe 43 Cavity of HIV-1 gp120

Targeting protein–protein interactions, such as the HIV‐1 gp120—CD4 interface, has become a cutting‐edge approach in the current drug discovery scenario. Many small molecules have been developed so far as inhibitors of the interaction between CD4 and HIV‐1 gp120. However, due to a variety of reasons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemMedChem 2013-03, Vol.8 (3), p.475-483
Hauptverfasser: Tintori, Cristina, Selvaraj, Manikandan, Badia, Roger, Clotet, Bonaventura, Esté, José A., Botta, Maurizio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Targeting protein–protein interactions, such as the HIV‐1 gp120—CD4 interface, has become a cutting‐edge approach in the current drug discovery scenario. Many small molecules have been developed so far as inhibitors of the interaction between CD4 and HIV‐1 gp120. However, due to a variety of reasons such as solubility, drug toxicity and drug resistance, these inhibitors have failed to prove clinically useful. As such, the identification of novel compounds that bind to protein–protein interactions is still a research area of considerable interest. Here, a structure‐based virtual screening approach was successfully applied with the aim of identifying novel HIV‐1 entry inhibitors targeting the Phe 43 pocket of HIV‐1 gp120. Several compounds able to inhibit viral replication in cell culture were identified, with the best agent endowed with an EC50 value of 0.9 μM. Inactivity of all the identified hits toward a mutant (Met 475 Ile) strain strongly suggests that they interact in the Phe 43 cavity of gp120, as intended. Remarkably, all of these small molecules have a chemical scaffold unrelated to any known class of entry inhibitors reported thus far. Overall, our strategy led to the identification of four novel chemical scaffolds that inhibit HIV‐1 replication through the destabilization of the HIV‐1 gp120–CD4 interface. Antiviral identification: Using a virtual screening protocol, ∼250 000 commercially available compounds were theoretically evaluated for potential anti‐HIV activity through disruption of the gp120–CD4 interface. Twenty hits were subsequently evaluated in vitro, identifying four novel chemical scaffolds with EC50 values ranging between 25–0.9 μM against wild‐type (NL4‐3) HIV‐1‐infected MT‐4 cells. Phe 43 cavity of gp120 was confirmed as the target by a mutation experiment, being the Met 475 Ile mutant strain resistant to these agents.
ISSN:1860-7179
1860-7187
DOI:10.1002/cmdc.201200584