Crude oil removal from water: Influence of organic phase composition and mineral content

The effect of organic and inorganic compounds, commonly present in the mineralogy of crude oil and/or added in the washing processes of extracted crude, on the removal efficiency of emulsified oils present in waste washing waters was investigated by means of flocculation. Approximately 90% of the em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of chemical engineering 2024-07
Hauptverfasser: Rintoul, Ignacio, Uldry, Thomas, Hunkeler, David
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of organic and inorganic compounds, commonly present in the mineralogy of crude oil and/or added in the washing processes of extracted crude, on the removal efficiency of emulsified oils present in waste washing waters was investigated by means of flocculation. Approximately 90% of the emulsified oil could be removed using an anionic flocculant, providing a residual turbidity below 100 NTU. The yield depended on the nature of the organic and inorganic components present. The higher the chain length of the main organic component, the greater the flocculant concentration required to remove the oil. Several components had an effect of emulsification (e.g., octane, decane), some of which rendered de‐oiling process completely ineffective (e.g., naphthenic acids). Aliphatics were the most difficult to eliminate, requiring flocculant levels in the 200–300 ppm range. This is in contrast to 75–100 ppm levels which were required to remove bi‐ and poly‐cyclic aromatics. Heavy oils were more difficult to remove than light oils. There was a strong effect of the pH of the aqueous phase. The optimum was pH = 2.0. Virtually all inorganic compounds reduced the efficiency of removing oil from water when spiked at 1%. The only exception was sodium carbonate which acted as a de‐emulsifier. Monovalent salts have a minor effect on de‐oiling, with efficiencies remaining at 80%. Divalent chlorides reduced the de‐oiling efficiency to 70% while sulphates had a more severe influence. The de‐oiling efficiency was lowered substantially with the addition of clays, zinc, cadmium, ferric oxide, calcium carbonate, and dibenyhlthiophene.
ISSN:0008-4034
1939-019X
DOI:10.1002/cjce.25412