CoPS/Co 4 S 3 Heterojunction with Highly Exposed Active Sites and Dual-site Synergy for Effective Hydrogen Evolution Reactions

Cobalt phosphosulphide (CoPS) has recently been recognized as a potentially effective electrocatalyst for the hydrogen evolution reaction (HER). However, there have been no research on the design of CoPS-based heterojunctions to boost their HER performance. Herein, CoPS/Co4S3 heterojunction was prep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2024-07, Vol.30 (41), p.e202401038
Hauptverfasser: Song, Kai, Yang, Dian, Zhou, Chenjing, Li, Qingao, Zhang, Lili, Gong, Junjie, Zhong, Wenwu, Shen, Shijie, Chen, Shichang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cobalt phosphosulphide (CoPS) has recently been recognized as a potentially effective electrocatalyst for the hydrogen evolution reaction (HER). However, there have been no research on the design of CoPS-based heterojunctions to boost their HER performance. Herein, CoPS/Co4S3 heterojunction was prepared by phosphating treatment based on defect-rich flower-like Co1-xS precursors. The high specific surface area of nanopetals, together with the heterojunction structure with inhomogeneous strain, exposes more active sites in the catalyst. The electronic structure of the catalyst is reconfigured as a result of the interfacial interactions, which promote the catalyst's ability to adsorb hydrogen and conduct electricity. The synergistic effect of the Co and S dual-site further enhance the catalytic activity. The catalyst has overpotentials of 61 and 70 mV to attain a current density of 10 mA cm-2 in acidic and alkaline media, respectively, which renders it competitive with previously reported analogous catalysts. This work proposes an effective technique for constructing transition metal phosphosulfide heterojunctions, as well as the development of an efficient HER electrocatalyst.
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.202401038