Differentiation of Pt−Fe and Pt−Ni 3 Surface Catalytic Mechanisms towards Contrasting Products in Chemoselective Hydrogenation of α,β‐Unsaturated Aldehydes

Noble‐metal catalysts serve as an irreplaceable role in pharmaceutical, perfume and fine chemicals fields. However, there still remains a grand challenge in controlling chemoselectivity. Herein, we have synthesized a bimetallic nanostructure supported on porous metal‐organic frameworks (Pt−Fe/UiO‐66...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2021-01, Vol.13 (2), p.704-711
Hauptverfasser: Ning, Liangmin, Zhang, Mingtao, Liao, Shengyun, Zhang, Yuting, Jia, Dandan, Yan, Yunfang, Gu, Wen, Liu, Xin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Noble‐metal catalysts serve as an irreplaceable role in pharmaceutical, perfume and fine chemicals fields. However, there still remains a grand challenge in controlling chemoselectivity. Herein, we have synthesized a bimetallic nanostructure supported on porous metal‐organic frameworks (Pt−Fe/UiO‐66, Pt‐Ni 3 /UiO‐66), in which Pt nanoparticles was modified with non‐noble metal (Fe or Ni) directly. The as‐synthesized catalysts can function as a switch for selective hydrogenation of α,β‐unsaturated aldehydes to afford the potential products on‐demand. In comparison with the conventional Pt‐based catalysts, Pt−Fe/UiO‐66 and Pt‐Ni 3 /UiO‐66 catalysts exhibit excellently catalytic activity, enhanced selectivity and improved stability for selectivity hydrogenation. The partial charge reconfiguration and electronic coupling effect existing in such distinctive bicomponent nanocatalysts was confirmed by some comprehensive characterization and density functional theory (DFT) calculations. The developed method for precisely modification the composition and interaction between the noble metal and non‐noble metal provides a feasible avenue to design the advanced catalysts.
ISSN:1867-3880
1867-3899
DOI:10.1002/cctc.202001482