Interaction of alcohols with proteins
The kinetics of denaturation of egg albumin have been determined for methanol, ethanol, propanol, and butanol. The reactions are first order in respect to protein but between 11th and 18th order for the alcohols. The denaturation reaction is characterized by a large temperature coefficient with litt...
Gespeichert in:
Veröffentlicht in: | Biopolymers 1978-09, Vol.17 (9), p.2121-2131 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The kinetics of denaturation of egg albumin have been determined for methanol, ethanol, propanol, and butanol. The reactions are first order in respect to protein but between 11th and 18th order for the alcohols. The denaturation reaction is characterized by a large temperature coefficient with little or no dependence on pH. There is a marked change of pH when proteins are denatured. A series of eight proteins has been studied. There is surprisingly little difference in susceptibility to alcohol denaturation between the various proteins. Methanol, ethanol, propanol, and butanol are strongly bound to egg albumin—butanol being the most strongly bound. The binding of alcohol is probably accompanied by protein dehydration. The polyhydric alcohols' behavior is much different. These alcohols do not denature proteins and the protein is hydrated. Sucrose produces the greatest degree of hydration. |
---|---|
ISSN: | 0006-3525 1097-0282 |
DOI: | 10.1002/bip.1978.360170907 |