A Bayesian Decision Procedure for Selecting Prognostic Variables Associated with Survival for Data in which Censoring is Prevalent

A Bayesian procedure is developed for the selection of concomitant variables in survival models. The variables are selected in a step‐up procedure according to the criterion of maximum expected likelihood, where the expectation is over the prior parameter space. Prior knowledge of the influence of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 1995, Vol.37 (4), p.463-479
Hauptverfasser: Fraser, Martin D., Bartolucci, Alfred A., Smith, William A., Singh, Karen P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Bayesian procedure is developed for the selection of concomitant variables in survival models. The variables are selected in a step‐up procedure according to the criterion of maximum expected likelihood, where the expectation is over the prior parameter space. Prior knowledge of the influence of these covariates on patient prognosis is incorporated into the analysis. The step‐up procedure is stopped when the Bayes factor in favor of omitting the variable selected in a particular step exceeds a specified value. The resulting model with the selected variables is fitted using Bayes estimates of the coefficients. This technique is applied to Hodgkin's disease data from a large Cooperative Clinical Trial Group and the results are compared to the results from the classical likelihood selection procedure.
ISSN:0323-3847
1521-4036
DOI:10.1002/bimj.4710370407