What goes on behind closed doors: physiological versus pharmacological steroid hormone actions

Steroid-hormone-activated receptor proteins are among the best-understood class of factors for altering gene transcription in cells. Steroid receptors are of major importance in maintaining normal human physiology by responding to circulating concentrations of steroid in the nM range. Nonetheless, m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioEssays 2008-08, Vol.30 (8), p.744-756
1. Verfasser: Simons, S. Stoney Jr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Steroid-hormone-activated receptor proteins are among the best-understood class of factors for altering gene transcription in cells. Steroid receptors are of major importance in maintaining normal human physiology by responding to circulating concentrations of steroid in the nM range. Nonetheless, most studies of steroid receptor action have been conducted using the supra-physiological conditions of saturating concentrations (>=100 nM) of potent synthetic steroid agonists. Here we summarize the recent developments arising from experiments using two clinically relevant conditions: subsaturating concentrations of agonist (to mimic the circulating concentrations in mammals) and saturating concentrations of antagonists (which are employed in endocrine therapies to block the actions of endogenous steroids). These studies have revealed new facets of steroid hormone action that could not be uncovered by conventional experiments with saturating concentrations of agonist steroids, such as a plethora of factors/conditions for the differential control of gene expression by physiological levels of steroid, a rational approach for examining the gene-specific variations in partial agonist activity of antisteroids, and a dissociation of steroid potency and efficacy that implies the existence of separate, and possibly novel, mechanistic steps and cofactors. BioEssays 30:744-756, 2008.
ISSN:0265-9247
1521-1878
DOI:10.1002/bies.20792