Protocol for Quantifying All Electrolyte Compositions in Aged Lithium‐ion Batteries
The aging of lithium‐ion batteries (LIBs) typically accompanies the degradation of electrolyte, but the relationship between them remains unclear. Therefore, quantifying residual electrolyte in batteries at different states of health (SOH) is a crucial issue. Here, we have developed a comprehensive...
Gespeichert in:
Veröffentlicht in: | Batteries & supercaps 2024-12, Vol.7 (12), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aging of lithium‐ion batteries (LIBs) typically accompanies the degradation of electrolyte, but the relationship between them remains unclear. Therefore, quantifying residual electrolyte in batteries at different states of health (SOH) is a crucial issue. Here, we have developed a comprehensive characterization method to quantitatively analyze the electrolyte salts, solvents, and additives in commercial pouch cell, achieving quantification of all electrolyte compositions with high accuracy. Compared to the reported external standard method used in gas chromatography‐mass spectrometry (GC‐MS), we developed an internal standard method, which offers higher accuracy and reliability, with the maximum error decreased from 9.54 % to 3.48 %. Moreover, the quantitative accuracy of the calibration curves remains unchanged after 2 months. Multi‐instruments analysis is also utilized for the extraction and quantitative analysis of electrolyte in practical battery systems, achieving less than 5 % quantification error for all compositions. With our proposed method, it becomes possible to determine the absolute amounts of all electrolyte compositions, rather than obtaining limited information such as concentration or relative content. It is believed that this protocol of quantifying electrolyte compositions in commercial cells could serve as a baseline for further studies to reveal the relationship between electrolyte degradation and battery aging.
This work proposes a comprehensive method for completely extracting residual electrolyte from pouch cells and accurately quantifying the absolute amount of all electrolyte compositions using GC‐MS, NMR, and ICP‐OES, with a maximum error of less than 5 %. The method is highly reproducible and equally applicable for the accurate quantification of complex electrolytes and other battery formats with appropriate adjustments. |
---|---|
ISSN: | 2566-6223 2566-6223 |
DOI: | 10.1002/batt.202400341 |