Constructing Rechargeable Solid‐State Lithium‐Oxygen Batteries
Lithium‐oxygen batteries (LOBs) hold great potential for electrochemical energy storage due to their high theoretical energy density. However, the utilization of conventional liquid electrolytes raises safety concerns such as flammability and leakage, which are also problematic in lithium‐ion batter...
Gespeichert in:
Veröffentlicht in: | Batteries & supercaps 2023-10, Vol.6 (10) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lithium‐oxygen batteries (LOBs) hold great potential for electrochemical energy storage due to their high theoretical energy density. However, the utilization of conventional liquid electrolytes raises safety concerns such as flammability and leakage, which are also problematic in lithium‐ion batteries. The development of practical open battery systems employing volatile liquid electrolytes, with the ultimate goal of lithium‐air batteries, presents particular challenges. Solid‐state electrolytes (SSEs) have emerged as a promising solution to tackle these issues. In the past two decades, SSEs have garnered significant attention and have been successfully implemented in LOBs. This review aims to highlight recent advancements in SSEs for LOBs, exploring the opportunities and challenges associated with developing SSEs possessing high ionic conductivity, interfacial compatibility, and stability. The objective is to enhance reversibility, promote an increase in stable triple‐phase boundaries, and safeguard the Li anode in open battery systems. Finally, we put forth future directions for the advancement of solid‐state Li‐air batteries. |
---|---|
ISSN: | 2566-6223 2566-6223 |
DOI: | 10.1002/batt.202300230 |