Unravelling Charge Carrier Mobility in d 0 ‐Metal‐based Spinels
Enabling high Mg ion mobility, spinel‐type materials are promising candidates for cathode or solid electrolyte applications. To elucidate the factors governing the observed high mobility of multivalent ions, periodic DFT calculations of various charge carriers (A=Li, Na, K, Mg, Ca, Zn and Al) in the...
Gespeichert in:
Veröffentlicht in: | Batteries & supercaps 2022-07, Vol.5 (7) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Enabling high Mg ion mobility, spinel‐type materials are promising candidates for cathode or solid electrolyte applications. To elucidate the factors governing the observed high mobility of multivalent ions, periodic DFT calculations of various charge carriers (A=Li, Na, K, Mg, Ca, Zn and Al) in the ASc
2
S
4
and ASc
2
Se
4
spinel compounds were performed, resulting in the identification of a Brønsted‐Evans‐Polanyi‐type scaling relation for the migration barriers of the various charge carriers. Combining this scaling relation with the derivation of a descriptor, solely based on easily accessible observables, constitutes a conceptual framework to investigate ion mobility in
d
0
‐metal‐based spinel chalcogenides with significantly reduced computational effort. This approach was exemplarily verified for various
d
0
‐metal‐based spinel chalcogenide compounds AB
2
X
4
(B=Sc, Y, Ga, In, Er and Tm; X=O, S and Se) and led to the identification of
d
0
‐metal‐based CaB
2
O
4
spinels as promising compounds possibly enabling high Ca ion mobility. |
---|---|
ISSN: | 2566-6223 2566-6223 |
DOI: | 10.1002/batt.202200164 |