Orthorhombic Nanostructured Li 2 MnSiO 4 /Al 2 O 3 Supercapattery Electrode with Efficient Lithium‐Ion Migratory Pathway

A Li 2 MnSiO 4 /Al 2 O 3 nanocomposite (LMSA) was prepared as positive electrode material for aqueous supercapatteries by hydrothermal synthesis of Li 2 MnSiO 4 nanoparticles (LMS) followed by wet chemical coating with Al 2 O 3 . Scanning electron microscopy (SEM) mapping of the spherical LMSA nanop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Batteries & supercaps 2018-12, Vol.1 (6), p.223-235
Hauptverfasser: Ndipingwi, Miranda M., Ikpo, Chinwe O., Hlongwa, Ntuthuko W., Myalo, Zolani, Ross, Natasha, Masikini, Milua, John, Suru V., Baker, Priscilla G., Roos, Wiets D., Iwuoha, Emmanuel I.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Li 2 MnSiO 4 /Al 2 O 3 nanocomposite (LMSA) was prepared as positive electrode material for aqueous supercapatteries by hydrothermal synthesis of Li 2 MnSiO 4 nanoparticles (LMS) followed by wet chemical coating with Al 2 O 3 . Scanning electron microscopy (SEM) mapping of the spherical LMSA nanoparticles indicated a homogenous distribution of the constituent atoms. Small‐angle X‐ray scattering (SAXS) measurements revealed that a prominent population of the nanoparticles show a center‐to‐center spacing of 7 nm. This is resulting in a large surface area accessible for the migration of Li‐ions and efficient charge storage, leading to improved electrochemical performance as a supercapattery electrode. X‐ray diffraction (XRD) and solid‐state nuclear magnetic resonance spectroscopy (SS NMR) studies portrayed the orthorhombic ( Pmn 2 1 ) crystalline phase of the LMSA and LMS materials which provides a good migratory pathway for the Li‐ions. The nanocomposite showed a high rate performance as a positive electrode in an aqueous supercapattery assembled with activated carbon as the negative electrode. The hybrid cell delivered a maximum specific capacitance of 141.5 F g −1 and a maximum specific power of 4020.8 W kg −1 with good cyclic stability and capacitance retention of 93.6 % after 100 cycles. These results the promising potential of the Li 2 MnSiO 4 /Al 2 O 3 nanocomposite as candidate for advanced supercapatteries.
ISSN:2566-6223
2566-6223
DOI:10.1002/batt.201800045