On a two-body problem with periodically changing equivalent gravitational parameter

Assigning to the equivalent gravitational parameter of a two‐body dynamic system, a periodic change of a small amplitude B and arbitrary frequency and phase, the behaviour of an elliptic‐type orbit is studied. The first order (in B) perturbations of the orbital elements are determined by using Delau...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomische Nachrichten 1992, Vol.313 (4), p.257-263
Hauptverfasser: Şaru, D., Cucu-Dumitrescu, C., Mioc, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assigning to the equivalent gravitational parameter of a two‐body dynamic system, a periodic change of a small amplitude B and arbitrary frequency and phase, the behaviour of an elliptic‐type orbit is studied. The first order (in B) perturbations of the orbital elements are determined by using Delaunay's canonical variables. According to the value of the ratio between oscillation frequency and dynamic frequency, three cases (non‐resonant (NR), quasi‐resonant (QR), and resonant (R) ones) are pointed out. The solution of motion equations shows that only in the QR and R cases there are elements (argument of pericentre and mean anomaly) affected by secular perturbations. The solutions are valid over prediction times of order of pericentre and mean anomaly) affected by secular perturbations. The solutions are valid over prediction times of order B−1 in the NR case and B−1/2 in the QR and R cases.
ISSN:0004-6337
1521-3994
DOI:10.1002/asna.2113130408