Controllable fabrication of multi‐modal porous PLGA scaffolds with different sizes of SPIONs using supercritical CO 2 foaming

Multi‐modal porous scaffolds can promote bone regeneration. In the present study, they were successfully fabricated from poly (lactic‐co‐glycolic acid) (PLGA)/superparamagnetic iron oxide nanoparticles (SPIONs) by supercritical CO 2 foaming, where SPIONs was employed as heterogeneous nucleation agen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2022-06, Vol.139 (23)
Hauptverfasser: Wang, Jinjing, Zhang, Yi, Sun, Jianfei, Jiao, Zhen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multi‐modal porous scaffolds can promote bone regeneration. In the present study, they were successfully fabricated from poly (lactic‐co‐glycolic acid) (PLGA)/superparamagnetic iron oxide nanoparticles (SPIONs) by supercritical CO 2 foaming, where SPIONs was employed as heterogeneous nucleation agent. The effects of SPION size on pore nucleation in PLGA/SPIONs nanocomposites were investigated. It was found that the addition of smaller SPIONs size caused the reduction of pore size. Multi‐modal porous scaffolds could be available by controlling the SPIONs content, soaking temperature, pressure, and depressurization rate. The porosity of the PLGA/SPIONs scaffolds ranged from (58.68 ± 0.62)% to (94.97 ± 0.14)% could be obtained via adjusting the supercritical CO 2 foaming conditions. Moreover, it was found that the compressive modulus and porosity of the scaffolds were strongly associated with the porous structure. This study provided a new green preparation method for magnetic scaffolds to realize the controllable adjustment of the multi‐mode porous scaffolds.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.52287