Preparation and characterization of controlled‐release microencapsulated acids for deep acidizing of carbonate reservoirs

Based on the deficiency of traditional acidification or acid pressure technology in the development of carbonate oil and gas resources, a microcapsule which wraps hydrochloric acid and can be released through temperature control was prepared by using microcapsule technology. The microcapsules were p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2021-06, Vol.138 (21), p.n/a, Article 50502
Hauptverfasser: Feng, Qian, Chen, Xue Wen, Peng, Zhi Gang, Zheng, Yong, Zhang, Xiao Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on the deficiency of traditional acidification or acid pressure technology in the development of carbonate oil and gas resources, a microcapsule which wraps hydrochloric acid and can be released through temperature control was prepared by using microcapsule technology. The microcapsules were prepared with polyurethane prepolymer (PUA) and 1,6‐hexadiol diacrylate (HDDA) polymer as wall material and hydrochloric acid as core material by two emulsification and photocatalysis methods. Its parcel rate is 61.9%. Fourier transform infrared spectroscopy characterization confirmed the successful photopolymerization of PUA prepolymer and HDDA in a strong acid environment. The microscopic morphology analysis of electron microscope showed that the microcapsule was regular and uniform spherical with smooth and dense surface. The particle size analysis showed that the microcapsules were mainly distributed between 40 and 300 μm, and the average particle size was 114.02 μm.The glass temperature of microcapsule wall material was 97°C by DSC method. The release rate of microcapsules was accelerated with the increase of release temperature. The cumulative release rate of acid solution of microcapsules for 3 h reached 28.4%, and the final release rate of microcapsules for 12 h reached 90.7% under 100°C. In addition, the release of microcapsules is less affected by the formation salinity. At 90°C, the maximum release rate of 7.5 g/L CaCL2 was 49.1%, lower than that of 59.4% in pure water, showing the good salt resistance of the wall materials of microcapsules.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.50502