Poly(ε-caprolactone)-grafted acetylated anhydroglucose oligomer by ring-opening polymerization-Synthesis and characterization

A novel acetylated anhydroglucose oligomer (AGU‐oligomer), prepared by acid catalyzed transglycosidation of potato starch triacetate and ethylene glycol, was used as a multifunctional coinitiator for the ring‐opening polymerization of ε‐caprolactone (ε‐CL). The polymers were synthesized using differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2006-04, Vol.100 (2), p.1633-1641
Hauptverfasser: Gädda, Thomas, Kylmä, Janne, Tuominen, Jukka, Mikkonen, Hannu, Laine, Aki, Peltonen, Soili, Seppälä, Jukka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel acetylated anhydroglucose oligomer (AGU‐oligomer), prepared by acid catalyzed transglycosidation of potato starch triacetate and ethylene glycol, was used as a multifunctional coinitiator for the ring‐opening polymerization of ε‐caprolactone (ε‐CL). The polymers were synthesized using different weight ratios of the starting materials and were characterized by NMR, SEC, and MALLS. The results confirmed the expected P(AGU/CL) polymer structure, namely a ‘comb‐like’ graft‐copolymer having the AGU oligomer as backbone with PCL grafts of variable chain lengths (LCL = 4–21). Thermal and mechanical properties of graft‐copolymers with different ε‐CL block lengths were examined. By changing the graft length, crystallinity was controlled and amorphous polymers were obtained with AGU‐oligomer contents higher than 50 wt %. The tensile properties varied with the composition and a copolymer having 40 wt % of AGU‐oligomer behaved like soft elastomer, showing high elongation at break. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1633–1641, 2006
ISSN:0021-8995
1097-4628
DOI:10.1002/app.23697