Multiscale analysis of monoglyceride oleogels during storage

Oleogelation offers the possibility to reduce the saturated fatty acid (SAFA) content while maintaining the desired organoleptic properties. Hereby, SAFAs are replaced by other structurants which can create a three‐dimensional network that immobilizes the liquid oil. Depending on the type of structu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Oil Chemists' Society 2022-11, Vol.99 (11), p.1019-1031
Hauptverfasser: Rondou, Kato, De Witte, Fien, Rimaux, Tom, Dewinter, Wim, Dewettinck, Koen, Verwaeren, Jan, Van Bockstaele, Filip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oleogelation offers the possibility to reduce the saturated fatty acid (SAFA) content while maintaining the desired organoleptic properties. Hereby, SAFAs are replaced by other structurants which can create a three‐dimensional network that immobilizes the liquid oil. Depending on the type of structurants, different structuring routes are identified. The use of monoacylglycerols (MAGs) as structurants is a promising approach thanks to their great self‐assembling properties. However, implementation into the food industry is still hampered due to insufficient characterization. This research includes a multiscale analysis of two dynamically produced MAG‐based oleogels (6% MAGs in oil, MO1 and MO2) as a function of the storage time (up to 8 weeks). Slight differences in the production process resulted in pronounced differences in techno‐functional properties of the MAG‐based oleogels. MO1 consisted of larger crystals, which resulted in a lower rigidity, reduced stability, and lower oil binding capacity compared with the other oleogel (MO2). On the nanoscale, it was found that the crystal nanoplatelets (CNPs) of MO1 contained a higher number of lamellae compared with MO2. Additionally, the results obtained with ultra‐small angle x‐ray scattering indicated a larger equivalent diameter for the CNPs of MO1. As a function of the storage time, both oleogels did not show major structural changes up to 8 weeks of storage.
ISSN:0003-021X
1558-9331
DOI:10.1002/aocs.12645