A novel imidazolium-supported palladium-chloroglycine complex: copper- and solvent-free high-turnover catalysts for the Sonogashira coupling reaction

A novel, effective 1‐glycyl‐3‐methyl imidazolium chloride–palladium(II) complex ([Gmim]Cl–Pd(II)) was synthesized and studied as an organocatalyst for the Sonogashira coupling reaction under solvent‐free conditions at 25 °C. The hydrophobic group on amino acid favors reagent diffusion toward the chl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied organometallic chemistry 2012-11, Vol.26 (11), p.562-569
Hauptverfasser: Karthikeyan, Parasuraman, Muskawar, Prashant Narayan, Aswar, Sachin Arunrao, Bhagat, Pundlik Rambhau, Sythana, Suresh Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel, effective 1‐glycyl‐3‐methyl imidazolium chloride–palladium(II) complex ([Gmim]Cl–Pd(II)) was synthesized and studied as an organocatalyst for the Sonogashira coupling reaction under solvent‐free conditions at 25 °C. The hydrophobic group on amino acid favors reagent diffusion toward the chloroglycine moiety, increasing the catalytic activity of supported palladium complex. By this protocol, different aryl halides (Cl, Br and I) were reacted with phenylacetylene in good to excellent yields with turnover number 8.0 × 102 to 9.6 × 102. The catalyst was recycled for the reaction of bromobenzene with phenylacetylene for eight runs without appreciable loss of its catalytic activity and negligible metal leaching. Copyright © 2012 John Wiley & Sons, Ltd. A novel, effective 1‐glycyl‐3‐methyl imidazolium chloride–palladium(II) complex ([Gmim]Cl–Pd(II)) was synthesized and studied as an organocatalyst for the Sonogashira coupling reaction under solvent‐free conditions at 25 °C. The hydrophobic group on amino acid favors reagent diffusion toward the chloroglycine moiety, increasing the catalytic activity of supported palladium complex. By this protocol, different aryl halides (Cl, Br and I) were reacted with phenylacetylene in good to excellent yields with turnover number 8.0 × 102 to 9.6 × 102. The catalyst was recycled for the reaction of bromobenzene with phenylacetylene for eight runs without appreciable loss of its catalytic activity and negligible metal leaching.
ISSN:0268-2605
1099-0739
DOI:10.1002/aoc.2896