Reductive Carbon–Carbon Coupling on Metal Sites Regulates Photocatalytic CO 2 Reduction in Water Using ZnSe Quantum Dots

Colloidal quantum dots (QDs) consisting of precious‐metal‐free elements show attractive potentials towards solar‐driven CO 2 reduction. However, the inhibition of hydrogen (H 2 ) production in aqueous solution remains a challenge. Here, we describe the first example of a carbon–carbon (C−C) coupling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-08, Vol.61 (31)
Hauptverfasser: Xin, Zhi‐Kun, Huang, Mao‐Yong, Wang, Yang, Gao, Yu‐Ji, Guo, Qing, Li, Xu‐Bing, Tung, Chen‐Ho, Wu, Li‐Zhu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Colloidal quantum dots (QDs) consisting of precious‐metal‐free elements show attractive potentials towards solar‐driven CO 2 reduction. However, the inhibition of hydrogen (H 2 ) production in aqueous solution remains a challenge. Here, we describe the first example of a carbon–carbon (C−C) coupling reaction to block the competing H 2 evolution in photocatalytic CO 2 reduction in water. In a specific system taking ZnSe QDs as photocatalysts, the introduction of furfural can significantly suppress H 2 evolution leading to CO evolution with a rate of ≈5.3 mmol g −1  h −1 and a turnover number (TON) of >7500 under 24 h visible light. Meanwhile, furfural is upgraded to the self‐coupling product with a yield of 99.8 % based on the consumption of furfural. Mechanistic insights show that the reductive furfural coupling reaction occurs on surface Zn‐sites to consume electrons and protons originally used for H 2 production, while the CO formation pathway at surface anion vacancies from CO 2 remains.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202207222