Synergy Effect of a π-Conjugated Ionic Compound: Dual Interfacial Energy Level Regulation and Passivation to Promote V oc and Stability of Planar Perovskite Solar Cells
Defects and energy offsets at the bulk and heterojunction interfaces of perovskite are detrimental to the efficiency and stability of perovskite solar cells (PSCs). Herein, we designed an amphiphilic π-conjugated ionic compound (QAPyBF ), implementing simultaneous defects passivation and interface e...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2022-03, Vol.61 (11), p.e202117303 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Defects and energy offsets at the bulk and heterojunction interfaces of perovskite are detrimental to the efficiency and stability of perovskite solar cells (PSCs). Herein, we designed an amphiphilic π-conjugated ionic compound (QAPyBF
), implementing simultaneous defects passivation and interface energy level alignments. The p-type conjugated cations passivated the surface trap states and optimized energy alignment at the perovskite/hole transport layer. The highly electronegative [BF
]
enriched at the SnO
interface featured desired band alignment due to the dipole moment of this interlayer. The planar n-i-p PSC had an efficiency of 23.1 % with V
of 1.2 V. Notably, the synergy effect elevated the intrinsic endothermic decomposition temperature of the perovskite. The modified devices showed excellent long-term thermal (85 °C) and operational stability at the maximum power point for 1000 h at 45 °C under continuous one-sun illumination with no appreciable efficiency loss. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202117303 |