Zeolite‐Encaged Pd–Mn Nanocatalysts for CO 2 Hydrogenation and Formic Acid Dehydrogenation

A CO 2 ‐mediated hydrogen storage energy cycle is a promising way to implement a hydrogen economy, but the exploration of efficient catalysts to achieve this process remains challenging. Herein, sub‐nanometer Pd–Mn clusters were encaged within silicalite‐1 (S‐1) zeolites by a ligand‐protected method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-11, Vol.59 (45), p.20183-20191
Hauptverfasser: Sun, Qiming, Chen, Benjamin W. J., Wang, Ning, He, Qian, Chang, Albert, Yang, Chia‐Min, Asakura, Hiroyuki, Tanaka, Tsunehiro, Hülsey, Max J., Wang, Chi‐Hwa, Yu, Jihong, Yan, Ning
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A CO 2 ‐mediated hydrogen storage energy cycle is a promising way to implement a hydrogen economy, but the exploration of efficient catalysts to achieve this process remains challenging. Herein, sub‐nanometer Pd–Mn clusters were encaged within silicalite‐1 (S‐1) zeolites by a ligand‐protected method under direct hydrothermal conditions. The obtained zeolite‐encaged metallic nanocatalysts exhibited extraordinary catalytic activity and durability in both CO 2 hydrogenation into formate and formic acid (FA) dehydrogenation back to CO 2 and hydrogen. Thanks to the formation of ultrasmall metal clusters and the synergic effect of bimetallic components, the PdMn 0.6 @S‐1 catalyst afforded a formate generation rate of 2151 mol formate  mol Pd −1  h −1 at 353 K, and an initial turnover frequency of 6860 mol  mol Pd −1  h −1 for CO‐free FA decomposition at 333 K without any additive. Both values represent the top levels among state‐of‐the‐art heterogeneous catalysts under similar conditions. This work demonstrates that zeolite‐encaged metallic catalysts hold great promise to realize CO 2 ‐mediated hydrogen energy cycles in the future that feature fast charge and release kinetics.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202008962