Solar-Powered Organic Semiconductor-Bacteria Biohybrids for CO 2 Reduction into Acetic Acid

An organic semiconductor-bacteria biohybrid photosynthetic system is used to efficiently realize CO reduction to produce acetic acid with the non-photosynthetic bacteria Moorella thermoacetica. Perylene diimide derivative (PDI) and poly(fluorene-co-phenylene) (PFP) were coated on the bacteria surfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-04, Vol.59 (18), p.7224-7229
Hauptverfasser: Gai, Panpan, Yu, Wen, Zhao, Hao, Qi, Ruilian, Li, Feng, Liu, Libing, Lv, Fengting, Wang, Shu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An organic semiconductor-bacteria biohybrid photosynthetic system is used to efficiently realize CO reduction to produce acetic acid with the non-photosynthetic bacteria Moorella thermoacetica. Perylene diimide derivative (PDI) and poly(fluorene-co-phenylene) (PFP) were coated on the bacteria surface as photosensitizers to form a p-n heterojunction (PFP/PDI) layer, affording higher hole/electron separation efficiency. The π-conjugated semiconductors possess excellent light-harvesting ability and biocompatibility, and the cationic side chains of organic semiconductors could intercalate into cell membranes, ensuring efficient electron transfer to bacteria. Moorella thermoacetica can thus harvest photoexcited electrons from the PFP/PDI heterojunction, driving the Wood-Ljungdahl pathway to synthesize acetic acid from CO under illumination. The efficiency of this organic biohybrid is about 1.6 %, which is comparable to those of reported inorganic biohybrid systems.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202001047