Electrochemical Reduction of Carbon Dioxide to Methanol on Hierarchical Pd/SnO 2 Nanosheets with Abundant Pd-O-Sn Interfaces

Electrochemical conversion of CO into fuels using electricity generated from renewable sources helps to create an artificial carbon cycle. However, the low efficiency and poor stability hinder the practical use of most conventional electrocatalysts. In this work, a 2D hierarchical Pd/SnO structure,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2018-07, Vol.57 (30), p.9475-9479
Hauptverfasser: Zhang, Wuyong, Qin, Qing, Dai, Lei, Qin, Ruixuan, Zhao, Xiaojing, Chen, Xumao, Ou, Daohui, Chen, Jie, Chuong, Tracy T, Wu, Binghui, Zheng, Nanfeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrochemical conversion of CO into fuels using electricity generated from renewable sources helps to create an artificial carbon cycle. However, the low efficiency and poor stability hinder the practical use of most conventional electrocatalysts. In this work, a 2D hierarchical Pd/SnO structure, ultrathin Pd nanosheets partially capped by SnO nanoparticles, is designed to enable multi-electron transfer for selective electroreduction of CO into CH OH. Such a structure design not only enhances the adsorption of CO on SnO , but also weakens the binding strength of CO on Pd due to the as-built Pd-O-Sn interfaces, which is demonstrated to be critical to improve the electrocatalytic selectivity and stability of Pd catalysts. This work provides a new strategy to improve electrochemical performance of metal-based catalysts by creating metal oxide interfaces for selective electroreduction of CO .
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201804142