Integrating Multipolar Structures and Carboxyl Groups in sp 2 ‐Carbon Conjugated Covalent Organic Frameworks for Overall Photocatalytic Hydrogen Peroxide Production

The direct production of hydrogen peroxide (H 2 O 2 ) through photocatalytic reaction via H 2 O and O 2 is considered as an ideal approach. However, the efficiency of H 2 O 2 generation is generally limited by insufficient charge and mass transfer. Covalent organic framework (COFs) offer a promising...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-10, Vol.136 (41)
Hauptverfasser: Xu, Haocheng, Wang, Yandong, Xu, Yang, Wang, Qiaomu, Zhuang, Mingyan, Liao, Qiaobo, Xi, Kai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The direct production of hydrogen peroxide (H 2 O 2 ) through photocatalytic reaction via H 2 O and O 2 is considered as an ideal approach. However, the efficiency of H 2 O 2 generation is generally limited by insufficient charge and mass transfer. Covalent organic framework (COFs) offer a promising platform as metal‐free photocatalyst for H 2 O 2 production due to their potential for rational design at the molecular level. Herein, we integrated the multipolar structures and carboxyl groups into COFs to enhance the efficiency of photocatalytic H 2 O 2 production in pure water without any sacrificial agents. The introduction of octupolar and quadrupolar structures, along with an increase of molecular planarity, created efficient oxygen reduction reaction (ORR) sites. Meanwhile, carboxyl groups could not only boost O 2 and H 2 O 2 movement via enhancement of pore hydrophilicity, but also promote proton conduction, enabling the conversion to H 2 O 2 from ⋅O 2 − , which is the crucial intermediate product in H 2 O 2 photocatalysis. Overall, we demonstrate that TACOF‐1‐COOH, consisting of optimal octupolar and quadrupolar structures, along with enrichment sites (carboxyl groups), exhibited a H 2 O 2 yield rate of 3542 μmol h − 1 g −1 and a solar‐to‐chemical (SCC) efficiency of 0.55 %. This work provides valuable insights for designing metal‐free photocatalysts for efficient H 2 O 2 production.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.202408802