Unraveling the “Gap‐Filling” Mechanism of Multiple Charge Carriers in Aqueous Zn‐MoS 2 Batteries

The utilization rate of active sites in cathode materials for Zn‐based batteries is a key factor determining the reversible capacities. However, a long‐neglected issue of the strong electrostatic repulsions among divalent Zn 2+ in hosts inevitably causes the squander of some active sites (i.e., gap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-03, Vol.136 (11)
Hauptverfasser: Li, Shengwei, Zhao, Xudong, Wang, Tianhao, Wu, Jiae, Xu, Xinghe, Li, Ping, Ji, Xiaobo, Hou, Hongshuai, Qu, Xuanhui, Jiao, Lifang, Liu, Yongchang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The utilization rate of active sites in cathode materials for Zn‐based batteries is a key factor determining the reversible capacities. However, a long‐neglected issue of the strong electrostatic repulsions among divalent Zn 2+ in hosts inevitably causes the squander of some active sites (i.e., gap sites). Herein, we address this conundrum by unraveling the “gap‐filling” mechanism of multiple charge carriers in aqueous Zn‐MoS 2 batteries. The tailored MoS 2 /(reduced graphene quantum dots) hybrid features an ultra‐large interlayer spacing (2.34 nm), superior electrical conductivity/hydrophilicity, and robust layered structure, demonstrating highly reversible NH 4 + /Zn 2+ /H + co‐insertion/extraction chemistry in the 1 M ZnSO 4 +0.5 M (NH 4 ) 2 SO 4 aqueous electrolyte. The NH 4 + and H + ions can act as gap fillers to fully utilize the active sites and screen electrostatic interactions to accelerate the Zn 2+ diffusion. Thus, unprecedentedly high rate capability (439.5 and 104.3 mAh g −1 at 0.1 and 30 A g −1 , respectively) and ultra‐long cycling life (8000 cycles) are achieved.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.202320075