Breaking Surface Atomic Monogeneity of Rh 2 P Nanocatalysts by Defect‐Derived Phosphorus Vacancies for Efficient Alkaline Hydrogen Oxidation
Breaking atomic monogeneity of catalyst surfaces is promising for constructing synergistic active centers to cope with complex multi‐step catalytic reactions. Here, we report a defect‐derived strategy for creating surface phosphorous vacancies (P‐vacancies) on nanometric Rh 2 P electrocatalysts towa...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2023-12, Vol.135 (52) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Breaking atomic monogeneity of catalyst surfaces is promising for constructing synergistic active centers to cope with complex multi‐step catalytic reactions. Here, we report a defect‐derived strategy for creating surface phosphorous vacancies (P‐vacancies) on nanometric Rh
2
P electrocatalysts toward drastically boosted electrocatalysis for alkaline hydrogen oxidation reaction (HOR). This strategy disrupts the monogeneity and atomic regularity of the thermodynamically stable P‐terminated surfaces. Density functional theory calculations initially verify that the competitive adsorption behavior of H
ad
and OH
ad
on perfect P‐terminated Rh
2
P{200} facets (
p
‐Rh
2
P) can be bypassed on defective Rh
2
P{200} surfaces (
d
‐Rh
2
P). The P‐vacancies enable the exposure of sub‐surface Rh atoms to act as exclusive H adsorption sites. Therein, the H
ad
cooperates with the OH
ad
on the peripheral P‐sites to effectively accelerate the alkaline HOR. Defective Rh
2
P nanowires (
d
‐Rh
2
P NWs) and perfect Rh
2
P nanocubes (
p
‐Rh
2
P NCs) are then elaborately synthesized to experimentally represent the
d
‐Rh
2
P and
p
‐Rh
2
P catalytic surfaces. As expected, the P‐vacancy‐enriched
d
‐Rh
2
P NWs catalyst exhibits extremely high catalytic activity and outstanding CO tolerance for alkaline HOR electrocatalysis, attaining 5.7 and 14.3 times mass activity that of
p
‐Rh
2
P NCs and commercial Pt/C, respectively. This work sheds light on breaking the surface atomic monogeneity for the development of efficient heterogeneous catalysts. |
---|---|
ISSN: | 0044-8249 1521-3757 |
DOI: | 10.1002/ange.202315752 |