Defect‐Rich Bi 12 O 17 Cl 2 Nanotubes Self‐Accelerating Charge Separation for Boosting Photocatalytic CO 2 Reduction

Solar‐driven reduction of CO 2 , which converts inexhaustible solar energy into value‐added fuels, has been recognized as a promising sustainable energy conversion technology. However, the overall conversion efficiency is significantly limited by the inefficient charge separation and sluggish interf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2018-11, Vol.130 (45), p.15063-15067
Hauptverfasser: Di, Jun, Zhu, Chao, Ji, Mengxia, Duan, Meilin, Long, Ran, Yan, Cheng, Gu, Kaizhi, Xiong, Jun, She, Yuanbin, Xia, Jiexiang, Li, Huaming, Liu, Zheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solar‐driven reduction of CO 2 , which converts inexhaustible solar energy into value‐added fuels, has been recognized as a promising sustainable energy conversion technology. However, the overall conversion efficiency is significantly limited by the inefficient charge separation and sluggish interfacial reaction dynamics, which resulted from a lack of sufficient active sites. Herein, Bi 12 O 17 Cl 2 superfine nanotubes with a bilayer thickness of the tube wall are designed to achieve structural distortion for the creation of surface oxygen defects, thus accelerating the carrier migration and facilitating CO 2 activation. Without cocatalyst and sacrificing reagent, Bi 12 O 17 Cl 2 nanotubes deliver high selectivity CO evolution rate of 48.6 μmol g −1  h −1 in water (16.8 times than of bulk Bi 12 O 17 Cl 2 ), while maintaining stability even after 12 h of testing. This paves the way to design efficient photocatalysts with collaborative optimizing charge separation and CO 2 activation towards CO 2 photoreduction.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201809492