Exclusive Formation of Formic Acid from CO 2 Electroreduction by a Tunable Pd‐Sn Alloy

Conversion of carbon dioxide (CO 2 ) into fuels and chemicals by electroreduction has attracted significant interest, although it suffers from a large overpotential and low selectivity. A Pd‐Sn alloy electrocatalyst was developed for the exclusive conversion of CO 2 into formic acid in an aqueous so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2017-09, Vol.129 (40), p.12387-12391
Hauptverfasser: Bai, Xiaofang, Chen, Wei, Zhao, Chengcheng, Li, Shenggang, Song, Yanfang, Ge, Ruipeng, Wei, Wei, Sun, Yuhan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conversion of carbon dioxide (CO 2 ) into fuels and chemicals by electroreduction has attracted significant interest, although it suffers from a large overpotential and low selectivity. A Pd‐Sn alloy electrocatalyst was developed for the exclusive conversion of CO 2 into formic acid in an aqueous solution. This catalyst showed a nearly perfect faradaic efficiency toward formic acid formation at the very low overpotential of −0.26 V, where both CO formation and hydrogen evolution were completely suppressed. Density functional theory (DFT) calculations suggested that the formation of the key reaction intermediate HCOO* as well as the product formic acid was the most favorable over the Pd‐Sn alloy catalyst surface with an atomic composition of PdSnO 2 , consistent with experiments.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201707098