Deficits in mitochondrial function and glucose metabolism seen in sporadic and familial Alzheimer’s disease derived Astrocytes are ameliorated by increasing hexokinase 1

Background Astrocytes have multiple roles including providing neurons with metabolic substrates and maintaining neurotransmitters at neuronal synapses. Astrocyte glucose metabolism plays a key role in learning and memory with astrocytic glycogen a key substrate supporting memory encoding. The homeos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alzheimer's & dementia 2023-12, Vol.19 (S13), p.n/a
Hauptverfasser: Bell, Simon M, Wareing, Hollie, Hamshaw, Alexander, De, Suman, New, Elizabeth, Shaw, Pamela, De Marco, Matteo, Venneri, Annalena, Blackburn, Daniel J, Ferraiuolo, Laura, Mortiboys, Heather
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Astrocytes have multiple roles including providing neurons with metabolic substrates and maintaining neurotransmitters at neuronal synapses. Astrocyte glucose metabolism plays a key role in learning and memory with astrocytic glycogen a key substrate supporting memory encoding. The homeostatic role the astrocyte provides for neurons leads to metabolic demands, meaning that abnormalities in the function of astrocyte mitochondria and glycolysis could affect this relationship. Changes to cellular metabolism are seen early in Alzheimer’s disease (AD). Understanding cellular metabolism changes in AD astrocytes could be exploited as a new biomarker or synergistic therapeutic agent when combined with anti‐amyloid treatments in AD. Methods In this project, we characterised mitochondrial and glycolytic dysfunction in astrocytes derived from patients with sporadic (n = 6) and familial (PSEN1, n = 3) AD, and associated controls (n = 9). Astrocytes were derived using direct reprogramming technology. Astrocyte metabolic outputs; ATP, and extracellular lactate levels were measured using luminescent and fluorescent protocols. Mitochondrial respiration and glycolytic function were measured using a Seahorse XF Analyzer. Hexokinase deficits identified where corrected by transfecting astrocytes with an adenovirus viral vector containing the hexokinase 1 gene. Results In sAD astrocytes a 20% reduction (p = 0.05) and in fAD a 48% (p
ISSN:1552-5260
1552-5279
DOI:10.1002/alz.074618