Improved oxygen mass transfer modeling for diffused/subsurface aeration systems
The mass transfer analysis of the oxygen transfer performance of diffused air or subsurface mechanical aeration systems has progressed very little over the past 20 years. The recently‐developed ASCE Standard method for determination of the oxygen mass transfer performance of diffused or subsurface a...
Gespeichert in:
Veröffentlicht in: | AIChE journal 1989-09, Vol.35 (9), p.1527-1534 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mass transfer analysis of the oxygen transfer performance of diffused air or subsurface mechanical aeration systems has progressed very little over the past 20 years. The recently‐developed ASCE Standard method for determination of the oxygen mass transfer performance of diffused or subsurface aeration systems is based on a greatly over‐simplified mass transfer model. Although the ASCE Standard can be used to empirically evaluate point performance conditions, it does not provide a meaningful representation of the actual mass transfer process and is not capable of accurately assessing or predicting performance under changing operating or environmental conditions. A new oxygen mass transfer model has been developed which is a fundamentally more rigorous description of the actual mass transfer process in diffused aeration systems. This model can be confidently used to predict aerator performance under changing operating and environmental conditions. The model is easily adapted to numerical computer solution for routine aeration systems performance evaluation as well as process design. |
---|---|
ISSN: | 0001-1541 1547-5905 |
DOI: | 10.1002/aic.690350913 |