Quadratically convergent techniques in linearly constrained optimization
Methods for the solution of linearly constrained optimization of a nonlinear objective function are presented and compared. The methods of Fletcher‐Reeves, Fletcher, and Powell are used to generate search directions in the decision variable space. Generalized Kuhn‐Tucker conditions are presented and...
Gespeichert in:
Veröffentlicht in: | AIChE journal 1974-05, Vol.20 (3), p.555-563 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Methods for the solution of linearly constrained optimization of a nonlinear objective function are presented and compared. The methods of Fletcher‐Reeves, Fletcher, and Powell are used to generate search directions in the decision variable space. Generalized Kuhn‐Tucker conditions are presented and used to check for a local minimum. |
---|---|
ISSN: | 0001-1541 1547-5905 |
DOI: | 10.1002/aic.690200317 |