Quadratically convergent techniques in linearly constrained optimization

Methods for the solution of linearly constrained optimization of a nonlinear objective function are presented and compared. The methods of Fletcher‐Reeves, Fletcher, and Powell are used to generate search directions in the decision variable space. Generalized Kuhn‐Tucker conditions are presented and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 1974-05, Vol.20 (3), p.555-563
Hauptverfasser: Husen, Gregory J., Eakman, James M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methods for the solution of linearly constrained optimization of a nonlinear objective function are presented and compared. The methods of Fletcher‐Reeves, Fletcher, and Powell are used to generate search directions in the decision variable space. Generalized Kuhn‐Tucker conditions are presented and used to check for a local minimum.
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.690200317